Texas State University Logo

Online Resources

Join the Conversation

adjust type sizemake font smallermake font largerreset font size

Passty, Greg

 passty
Contact Information
Gregory B. Passty, Ph.D.
Professor


Office: MCS 582
Email: passty@txstate.edu
Phone: 512-245-3446
Cell:  512-557-0228
Fax: 512-245-3425
Research Interests
Experimental Mathematics, Optimization, Nonlinear Analysis, Differential Equations.

 

Professor Passty received his Ph.D. in Mathematics from University of Southern California in 1978.  Dr. Passty's research is in Parallel Sum of Monotone Operators, Convex Optimization, Iterative Construction of Fixed Points of Nonexpansive Mappings, and Splitting Algorithms. An area in which Dr. Passty would be interested in directing a dissertation would be in Nonlinear Analysis, specifically Optimization of Convex Functions.


Selected Publications:

  • Passty, Gregory B.; Torrejon, Ricardo M.; On extending the router sum to monotone operators. Linear circuits, systems and signal processing: theory and application (Phoenix, AZ, 1987), 391--395, North-Holland, Amsterdam, 1988.
  • Passty, Gregory B. The parallel sum of nonlinear monotone operators. Nonlinear Anal. 10 (1986), no. 3, 215--227.
  • Passty, Gregory B.; Torrejon, Ricardo; The parallel sum of generalized gradients. Trends in the theory and practice of nonlinear analysis (Arlington, Tex., 1984), 371--376, North-Holland Math. Stud., 110, North-Holland, Amsterdam, 1985.
  • Barnsley, M. F.; Herod, J. V.; Mosher, D. L.; Passty, G. B.; Solutions for a model Boltzmann equation by monotonicity methods. Houston J. Math. 9 (1983), no. 3, 345--355.
  • Passty, Gregory B. Construction of fixed points for asymptotically nonexpansive mappings. Proc. Amer. Math. Soc. 84 (1982), no. 2, 212--216.
  • Barnsley, M. F.; Herod, J. V.; Mosher, D. L.; Passty, G. B.; Some operators which commute in a nonlinear Boltzmann equation. Lett. Nuovo Cimento (2) 32 (1981), no. 16, 437--442.
  • Barnsley, M. F.; Herod, J. V.; Mosher, D. L.; Passty, G. B.; Analysis of Boltzmann equations in Hilbert space by means of a nonlinear eigenvalue property. Spectral theory of differential operators (Birmingham, Ala., 1981), pp. 45--52, North-Holland Math. Stud., 55, North-Holland, Amsterdam-New York, 1981.
  • Barnsley, M. F.; Herod, J. V.; Jory, V. V.; Passty, G. B.; The Tjon-Wu equation in Banach space settings. J. Funct. Anal. 43 (1981), no. 1, 32--51.
  • Passty, Gregory B.; Preservation of the asymptopic behavior of a nonlinear contraction semigroup by backward differencing. Houston J. Math. 7 (1981), no. 1, 103--110.
  • Passty, Gregory B.; Ergodic convergence to a zero of the sum of monotone operators in Hilbert space. J. Math. Anal. Appl. 72 (1979), no. 2, 383--390.
  • Bruck, Ronald E.; Passty, Gregory B.; Almost convergence of the infinite product of resolvents in Banach spaces. Nonlinear Anal. 3 (1979), no. 2, 279--282.